Connecting to SQream Using Python (pysqream)
The current Pysqream connector supports Python version 3.9 and newer. It includes a set of packages that allows Python programs to connect to SQream DB. The base pysqream
package conforms to Python DB-API specifications PEP-249.
pysqream
is a pure Python connector that can be installed with pip
on any operating system, including Linux, Windows, and macOS. pysqream-sqlalchemy
is a SQLAlchemy dialect for pysqream
.
Installing the Python Connector
Prerequisites
It is essential that you have the following installed:
Python
The connector requires Python version 3.9 or newer.
To see your current Python version, run the following command:
$ python --version
PIP
The Python connector is installed via pip
, the standard package manager for Python, which is used to install, upgrade and manage Python packages (libraries) and their dependencies.
We recommend upgrading to the latest version of pip
before installing.
To verify that you have the latest version, run the following command:
$ python3 -m pip install --upgrade pip
Collecting pip
Downloading https://files.pythonhosted.org/packages/00/b6/9cfa56b4081ad13874b0c6f96af8ce16cfbc1cb06bedf8e9164ce5551ec1/pip-19.3.1-py2.py3-none-any.whl (1.4MB)
|████████████████████████████████| 1.4MB 1.6MB/s
Installing collected packages: pip
Found existing installation: pip 19.1.1
Uninstalling pip-19.1.1:
Successfully uninstalled pip-19.1.1
Successfully installed pip-19.3.1
Note
On macOS, you may want to use virtualenv to install Python and the connector, to ensure compatibility with the built-in Python environment
If you encounter an error including
SSLError
orWARNING: pip is configured with locations that require TLS/SSL, however the ssl module in Python is not available.
- please be sure to reinstall Python with SSL enabled, or use virtualenv or Anaconda.
OpenSSL for Linux
The Python connector relies on OpenSSL for secure connections to SQream DB. Some distributions of Python do not include OpenSSL.
To install OpenSSL on RHEL/CentOS, run the following command:
$ sudo yum install -y libffi-devel openssl-devel
To install OpenSSL on Ubuntu, run the following command:
$ sudo apt-get install libssl-dev libffi-dev -y
Installing via PIP with an internet connection
The Python connector is available via PyPi.
To install the connector using pip, it is advisable to use the -U
or --user
flags instead of sudo, as it ensures packages are installed per user. However, it is worth noting that the connector can only be accessed under the same user.
To install pysqream
and pysqream-sqlalchemy
with the --user
flag, run the following command:
$ pip3.9 install pysqream pysqream-sqlalchemy --user
pip3
will automatically install all necessary libraries and modules.
Installing via PIP without an internet connection
To get the
.whl
package file, contact you SQream support representative.Run the following command:
tar -xf pysqream_connector_3.2.5.tar.gz
cd pysqream_connector_3.2.5
#Install all packages with --no-index --find-links .
python3 -m pip install *.whl -U --no-index --find-links .
python3.9 -m pip install pysqream-3.2.5.zip -U --no-index --find-links .
python3.9 -m pip install pysqream-sqlalchemy-0.8.zip -U --no-index --find-links .
Upgrading an Existing Installation
The Python drivers are updated periodically. To upgrade an existing pysqream installation, use pip’s -U
flag:
$ pip3.9 install pysqream pysqream-sqlalchemy -U
SQLAlchemy
SQLAlchemy is an Object-Relational Mapper (ORM) for Python. When you install the SQream dialect (pysqream-sqlalchemy
) you can use frameworks such as Pandas, TensorFlow, and Alembic to query SQream directly.
Creating a Standard Connection
Parameter |
Description |
---|---|
|
Username of a role to use for connection |
|
Specifies the password of the selected role |
|
Specifies the host name |
|
Specifies the port number |
|
An optional parameter |
|
Specifies the database name |
|
Establishing a multi-clustered connection. Input values: |
|
Specifies service queue to use |
import sqlalchemy as sa
from sqlalchemy.engine.url import URL
engine_url = URL('sqream'
, username='<user_name>'
, password='<password>'
, host='<host_name>'
, port=<port_number>
, port_ssl=<port_ssl>
, database='<database_name>')
engine = sa.create_engine(engine_url,connect_args={"clustered": False, "service": "<service_name>"})
Pulling a Table into Pandas
The following example shows how to pull a table in Pandas. This examples uses the URL method to create the connection string:
import sqlalchemy as sa
from sqlalchemy.engine.url import URL
import pandas as pd
engine_url = URL('sqream'
, username='sqream'
, password='12345'
, host='127.0.0.1'
, port=3108
, database='master')
engine = sa.create_engine(engine_url,connect_args={"clustered": True, "service": "admin"})
table_df = pd.read_sql("select * from nba", con=engine)
API
Using the Cursor
The DB-API specification includes several methods for fetching results from the cursor. This sections shows an example using the nba
table, which looks as follows:
Name |
Team |
Number |
Position |
Age |
Height |
Weight |
College |
Salary |
---|---|---|---|---|---|---|---|---|
Avery Bradley |
Boston Celtics |
0.0 |
PG |
25.0 |
6-2 |
180.0 |
Texas |
7730337.0 |
Jae Crowder |
Boston Celtics |
99.0 |
SF |
25.0 |
6-6 |
235.0 |
Marquette |
6796117.0 |
John Holland |
Boston Celtics |
30.0 |
SG |
27.0 |
6-5 |
205.0 |
Boston University |
|
R.J. Hunter |
Boston Celtics |
28.0 |
SG |
22.0 |
6-5 |
185.0 |
Georgia State |
1148640.0 |
Jonas Jerebko |
Boston Celtics |
8.0 |
PF |
29.0 |
6-10 |
231.0 |
5000000.0 |
|
Amir Johnson |
Boston Celtics |
90.0 |
PF |
29.0 |
6-9 |
240.0 |
12000000.0 |
|
Jordan Mickey |
Boston Celtics |
55.0 |
PF |
21.0 |
6-8 |
235.0 |
LSU |
1170960.0 |
Kelly Olynyk |
Boston Celtics |
41.0 |
C |
25.0 |
7-0 |
238.0 |
Gonzaga |
2165160.0 |
Terry Rozier |
Boston Celtics |
12.0 |
PG |
22.0 |
6-2 |
190.0 |
Louisville |
1824360.0 |
As before, you must import the library and create a Connection()
, followed by execute()
on a simple SELECT *
query:
import pysqream
con = pysqream.connect(host='127.0.0.1', port=3108, database='master'
, username='rhendricks', password='Tr0ub4dor&3'
, clustered=True)
cur = con.cursor() # Create a new cursor
# The select statement:
statement = 'SELECT * FROM nba'
cur.execute(statement)
When the statement has finished executing, you have a Connection
cursor object waiting. A cursor is iterable, meaning that it advances the cursor to the next row when fetched.
You can use fetchone()
to fetch one record at a time:
first_row = cur.fetchone() # Fetch one row at a time (first row)
second_row = cur.fetchone() # Fetch one row at a time (second row)
To fetch several rows at a time, use fetchmany()
:
# executing `fetchone` twice is equivalent to this form:
third_and_fourth_rows = cur.fetchmany(2)
To fetch all rows at once, use fetchall()
:
# To get all rows at once, use `fetchall`
remaining_rows = cur.fetchall()
cur.close()
# Close the connection when done
con.close()
The following is an example of the contents of the row variables used in our examples:
>>> print(first_row)
('Avery Bradley', 'Boston Celtics', 0, 'PG', 25, '6-2', 180, 'Texas', 7730337)
>>> print(second_row)
('Jae Crowder', 'Boston Celtics', 99, 'SF', 25, '6-6', 235, 'Marquette', 6796117)
>>> print(third_and_fourth_rows)
[('John Holland', 'Boston Celtics', 30, 'SG', 27, '6-5', 205, 'Boston University', None), ('R.J. Hunter', 'Boston Celtics', 28, 'SG', 22, '6-5', 185, 'Georgia State', 1148640)]
>>> print(remaining_rows)
[('Jonas Jerebko', 'Boston Celtics', 8, 'PF', 29, '6-10', 231, None, 5000000), ('Amir Johnson', 'Boston Celtics', 90, 'PF', 29, '6-9', 240, None, 12000000), ('Jordan Mickey', 'Boston Celtics', 55, 'PF', 21, '6-8', 235, 'LSU', 1170960), ('Kelly Olynyk', 'Boston Celtics', 41, 'C', 25, '7-0', 238, 'Gonzaga', 2165160),
[...]
Note
Calling a fetch command after all rows have been fetched will return an empty array ([]
).
Reading Result Metadata
When you execute a statement, the connection object also contains metadata about the result set, such as column names, types, etc).
The metadata is stored in the Connection.description
object of the cursor:
>>> import pysqream
>>> con = pysqream.connect(host='127.0.0.1', port=3108, database='master'
... , username='rhendricks', password='Tr0ub4dor&3'
... , clustered=True)
>>> cur = con.cursor()
>>> statement = 'SELECT * FROM nba'
>>> cur.execute(statement)
<pysqream.dbapi.Connection object at 0x000002EA952139B0>
>>> print(cur.description)
[('Name', 'STRING', 24, 24, None, None, True), ('Team', 'STRING', 22, 22, None, None, True), ('Number', 'NUMBER', 1, 1, None, None, True), ('Position', 'STRING', 2, 2, None, None, True), ('Age (as of 2018)', 'NUMBER', 1, 1, None, None, True), ('Height', 'STRING', 4, 4, None, None, True), ('Weight', 'NUMBER', 2, 2, None, None, True), ('College', 'STRING', 21, 21, None, None, True), ('Salary', 'NUMBER', 4, 4, None, None, True)]
You can fetch a list of column names by iterating over the description
list:
>>> [ i[0] for i in cur.description ]
['Name', 'Team', 'Number', 'Position', 'Age (as of 2018)', 'Height', 'Weight', 'College', 'Salary']
Loading Data into a Table
This example shows how to load 10,000 rows of dummy data to an instance of SQream.
To load data 10,000 rows of dummy data to an instance of SQream:
Run the following:
import pysqream from datetime import date, datetime from time import time con = pysqream.connect(host='127.0.0.1', port=3108, database='master' , username='rhendricks', password='Tr0ub4dor&3' , clustered=True) , cur = con.cursor()
Create a table for loading:
create = 'create or replace table perf (b bool, t tinyint, sm smallint, i int, bi bigint, f real, d double, s varchar(12), ss text, dt date, dtt datetime)' cur.execute(create)
Load your data into table using the
INSERT
command.Create dummy data matching the table you created:
data = (False, 2, 12, 145, 84124234, 3.141, -4.3, "Marty McFly" , u"キウイは楽しい鳥です" , date(2019, 12, 17), datetime(1955, 11, 4, 1, 23, 0, 0)) row_count = 10**4
Get a new cursor:
insert = 'insert into perf values (?,?,?,?,?,?,?,?,?,?,?)' start = time() cur.executemany(insert, [data] * row_count) print (f"Total insert time for {row_count} rows: {time() - start} seconds")
Close this cursor:
cur.close()
Verify that the data was inserted correctly:
cur = con.cursor() cur.execute('select count(*) from perf') result = cur.fetchall() # `fetchall` collects the entire data set print (f"Count of inserted rows: {result[0][0]}")
Close the cursor:
cur.close()
Close the connection:
con.close()
Using SQLAlchemy ORM to Create and Populate Tables
This section shows how to use the ORM to create and populate tables from Python objects.
To use SQLAlchemy ORM to create and populate tables:
Run the following:
import sqlalchemy as sa import pandas as pd engine_url = "sqream://rhendricks:secret_password@localhost:5000/raviga" engine = sa.create_engine(engine_url)
Build a metadata object and bind it:
metadata = sa.MetaData() metadata.bind = engine
Create a table in the local metadata:
employees = sa.Table( 'employees' , metadata , sa.Column('id', sa.Integer) , sa.Column('name', sa.VARCHAR(32)) , sa.Column('lastname', sa.VARCHAR(32)) , sa.Column('salary', sa.Float) )
The
create_all()
function uses the SQream engine object.Create all the defined table objects:
metadata.create_all(engine)
Populate your table.
Build the data rows:
insert_data = [ {'id': 1, 'name': 'Richard','lastname': 'Hendricks', 'salary': 12000.75} ,{'id': 3, 'name': 'Bertram', 'lastname': 'Gilfoyle', 'salary': 8400.0} ,{'id': 8, 'name': 'Donald', 'lastname': 'Dunn', 'salary': 6500.40} ]
Build the
INSERT
command:ins = employees.insert(insert_data)
Execute the command:
result = engine.execute(ins)
For more information, see the python_api_reference_guide.