Catalog Tables
Catalog tables provide metadata about the machine learning models and Python modules created within AISQream, allowing users to query and understand the properties of these stored objects.
Catalog Table: ml_models
Contains all ML models with general common information:
–# DDL
SELECT get_ddl(sqream_catalog.ml_models);
create table "master"."sqream_catalog"."ml_models" (
"model_id" bigint not null check ('CS ""flat""'),
"database" text(32) not null check ('CS ""flat""'),
"schema" text(32) not null check ('CS ""flat""'),
"name" text(32) not null check ('CS ""flat""'),
"ml_alg" text(32) not null check ('CS ""flat""')
);
–# ml_models
SELECT * FROM sqream_catalog.ml_models;
10,master,public,m1,LINEAR_REG
11,master,public,ml_xgb_catalog_test,XGBOOST
8,master,s,m,LINEAR_REG
9,master,public,m,PY_MODEL
Catalog table: ml_linear_reg
Contains all Linear Regression models, with more detailed information specifically for Linear Regression:
–# DDL
SELECT get_ddl(sqream_catalog.ml_linear_reg);
create table "master"."sqream_catalog"."ml_linear_reg" (
"model_id" bigint not null check ('CS ""flat""'),
"database" text(32) not null check ('CS ""flat""'),
"schema" text(32) not null check ('CS ""flat""'),
"name" text(32) not null check ('CS ""flat""'),
"ml_alg" text(32) not null check ('CS ""flat""'),
"initial_algorithm" text(32) not null check ('CS ""flat""'),
"gd_optimizer" text(32) not null check ('CS ""flat""'),
"coefficients" text(32) not null check ('CS ""flat""'),
"is_standardized" bool not null check ('CS ""flat""'),
"learning_rate" real not null check ('CS ""flat""'),
"epoch_count" int not null check ('CS ""flat""'),
"loss_function" text(32) not null check ('CS ""flat""'),
"tolerance" real not null check ('CS ""flat""'),
"time" text(32) not null check ('CS ""flat""')
);
–# ml_linear_reg
SELECT * FROM sqream_catalog.ml_linear_reg;
10,master,public,m1,LINEAR_REG,SVD,ADAM,{0.500000|0.500000},1,0.0000,1,MSE,0.0000,2025-02-06 15:10:55.150
8,master,s,m,LINEAR_REG,SVD,ADAM,{0.500000|0.500000},1,0.0000,1,MSE,0.0000,2025-02-06 15:10:42.121
Catalog table: ml_xgboost
Contains all XGboost models, with more detailed information specifically for XGboost:
–# DDL
SELECT get_ddl(sqream_catalog.ml_xgboost);
create table "master"."sqream_catalog"."ml_xgboost" (
"model_id" bigint not null check ('CS ""flat""'),
"database" text not null check ('CS ""flat""'),
"schema" text not null check ('CS ""flat""'),
"name" text not null check ('CS ""flat""'),
"ml_alg" text not null check ('CS ""flat""'),
"verbosity" text not null check ('CS ""flat""'),
"booster" text not null check ('CS ""flat""'),
"disable_default_eval_metric" text not null check ('CS ""flat""'),
"tree_booster_parameters_eta" text not null check ('CS ""flat""'),
"tree_booster_parameters_gamma" text not null check ('CS ""flat""'),
"tree_booster_parameters_max_depth" text not null check ('CS ""flat""'),
"tree_booster_parameters_min_child_weight" text not null check ('CS ""flat""'),
"tree_booster_parameters_max_delta_step" text not null check ('CS ""flat""'),
"tree_booster_parameters_subsample" text not null check ('CS ""flat""'),
"tree_booster_parameters_sampling_method" text not null check ('CS ""flat""'),
"tree_booster_parameters_colsample_bytree" text not null check ('CS ""flat""'),
"tree_booster_parameters_colsample_bylevel" text not null check ('CS ""flat""'),
"tree_booster_parameters_colsample_bynode" text not null check ('CS ""flat""'),
"tree_booster_parameters_lambda" text not null check ('CS ""flat""'),
"tree_booster_parameters_reg_lambda" text not null check ('CS ""flat""'),
"tree_booster_parameters_alpha" text not null check ('CS ""flat""'),
"tree_booster_parameters_reg_alpha" text not null check ('CS ""flat""'),
"tree_booster_parameters_tree_method" text not null check ('CS ""flat""'),
"tree_booster_parameters_scale_pos_weight" text not null check ('CS ""flat""'),
"tree_booster_parameters_process_type" text not null check ('CS ""flat""'),
"tree_booster_parameters_grow_policy" text not null check ('CS ""flat""'),
"tree_booster_parameters_max_leaves" text not null check ('CS ""flat""'),
"tree_booster_parameters_max_bin" text not null check ('CS ""flat""'),
"tree_booster_parameters_num_parallel_tree" text not null check ('CS ""flat""'),
"dart_booster_params_sample_type" text not null check ('CS ""flat""'),
"dart_booster_params_normalize_type" text not null check ('CS ""flat""'),
"dart_booster_params_rate_drop" text not null check ('CS ""flat""'),
"dart_booster_params_one_drop" text not null check ('CS ""flat""'),
"dart_booster_params_skip_drop" text not null check ('CS ""flat""'),
"linear_booster_params_updater" text not null check ('CS ""flat""'),
"linear_booster_params_feature_selector" text not null check ('CS ""flat""'),
"linear_booster_params_top_k" text not null check ('CS ""flat""'),
"objective" text not null check ('CS ""flat""'),
"base_score" text not null check ('CS ""flat""'),
"eval_metric" text not null check ('CS ""flat""'),
"cut_off_top_positions" text not null check ('CS ""flat""'),
"seed" text not null check ('CS ""flat""'),
"seed_per_iteration" text not null check ('CS ""flat""'),
"tweedie_variance_power" text not null check ('CS ""flat""'),
"huber_slope" text not null check ('CS ""flat""'),
"quantile_alpha" text not null check ('CS ""flat""'),
"aft_loss_distribution" text not null check ('CS ""flat""'),
"lambdarank_pair_method" text not null check ('CS ""flat""'),
"lambdarank_num_pair_per_sample" text not null check ('CS ""flat""'),
"lambdarank_normalization" text not null check ('CS ""flat""'),
"lambdarank_bias_norm" text not null check ('CS ""flat""'),
"lambdarank_unbiased" text not null check ('CS ""flat""'),
"ndcg_exp_gain" text not null check ('CS ""flat""'),
"epoch_count" text not null check ('CS ""flat""')
);
–# ml_xgboost
SELECT * FROM sqream_catalog.ml_xgboost;
1,master,public,m2,XGBOOST,VERBOSITY_SILENT,BOOSTER_GBTREE,0,0.300000,0.000000,6,1,0,1.000000,SAMPLING_METHOD_UNIFORM,1.000000,1.000000,1.000000,0.000000,0.000000,0.000000,0.000000,TREE_METHOD_AUTO,1.000000,PROCESS_TYPE_DEFAULT,GROW_POLICY_DEPTHWISE,0,0,1,SAMPLE_TYPE_UNSPECIFIED,NORMALIZE_TYPE_UNSPECIFIED,0.000000,0,0.000000,UPDATER_UNSPECIFIED,FEATURE_SELECTOR_UNSPECIFIED,0,OBJECTIVE_BINARY_LOGISTIC,0.000000,EVAL_METRIC_UNSPECIFIED,"""""",0,0,0.000000,0.000000,,AFT_LOSS_DISTRIBUTION_UNSPECIFIED,LAMBDARANK_PAIR_METHOD_UNSPECIFIED,0,0,0.000000,0,0,100
Catalog table: py_modules
Contains all Python modules:
–# DDL
SELECT get_ddl(sqream_catalog.py_modules);
"module_id" bigint not null check ('CS ""flat""'), "database_name" text(32) not null check ('CS ""flat""'), "module_name" text(32) not null check ('CS ""flat""'), "path" text(32) not null check ('CS ""flat""'), "entry_points" text(32) not null check ('CS ""flat""')
–# ml_linear_reg
SELECT * FROM sqream_catalog.py_modules;
22,master,pm,/home/sagib/py_udf.py,"{[name:func_name, args:[TEXT], ret_type:DATE, gpu:true]}"
36,master,m1,/home/sagib/py_udf.py,"{[name:return_input2, args:[TEXT], ret_type:TEXT, gpu:false]}"
Catalog table: py_module_permissions
Contains all Python modules permissions:
–# DDL
SELECT get_ddl(sqream_catalog.py_module_permissions);
database_name" text(32) not null check ('CS ""flat""'), "module_id" bigint not null check ('CS ""flat""'), "role_id" bigint not null check ('CS ""flat""'), "permission_type" int not null check ('CS ""flat""')
–# py_module_permissions
SELECT * FROM sqream_catalog.py_module_permissions;
master,0,8,11000
Master,0,8,11001
Catalog table: registered_algorithms
Contains all Python based AI models registered:
–# DDL
SELECT get_ddl(sqream_catalog.registered_algorithms);
"id" bigint not null check ('CS ""flat""'),
"database_name" text(32) not null check ('CS ""flat""'),
"alg_name" text(32) not null check ('CS ""flat""'),
"alg_path" text(32) not null check ('CS ""flat""'),
"train_method" text(32) not null check ('CS ""flat""'),
"predict_method" text(32) not null check ('CS ""flat""')
–# registered_algorithms
SELECT * FROM sqream_catalog.registered_algorithms;
6,master,logistic_regression,/tmp/sagib.py,train,predict